
1 Prior settings for simulation study in Section 5.1

Table 1 shows the prior distributions for the physical parameters. Physical considerations

and expert judgment usually lead to reasonably informative priors. Indeed, the generation

and ventilation rates are customarily assigned more informative priors based upon their

plausible ranges. One way to determine the hyperparameters in the prior distribution for

Table 1: Prior distributions for parameters in the analysis of the simulation study.

Model β Q G

PBBM, BNLR U(0, 14.5) U(12, 18) U(73.5, 136.5)

β is to write β as the product of the random airspeed (RA) at the boundary of the near

field and one half of the free surface area (SA) of the near field, i.e., β = 1
2
SA × RA. The

advantage of doing this is that SA is usually available and an estimate of RA can be obtained

with a non-directional anemometer, thus giving some prior information about β.

Matters are somewhat more delicate with process parameters. Unlike the physical param-

eters, the process parameters cannot be gleaned from physical considerations. In particular,

the φi’s and νi’s are usually weakly identifiable from the data and will require weakly infor-

mative priors. We choose such priors based upon mechanistic considerations. For example,

the νi’s control the smoothness of the latent process. Allowing excessive smoothness for this

process will not only impair inference but also cause numerical instabililities in the fitting

algorithm. Therefore, we assume that νi ∼ DU(9, 0.5, 2.5), where X ∼ DU(k, a, b) denotes a

discrete uniform distribution such that P (X = a+ sb) = 1/k, for s = 0, 1, · · · , k − 1.

The φi’s control the strength of temporal correlations in the two fields. We use the

practical range as a basis for assigning priors. The practical range is informally defined as

the time separation at which the correlation has dropped close to 0, say 0.05. We assume

each φi ∼ DU(10, 1, 20), where the hyperparameters were chosen such that the prior mean
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for the practical range is about half of the maximum absolute time separation.

Subsequent inference is much more robust to the prior assumptions on the entries in

A. The prior distributions for the different structural specifications of A are shown in

Table 2. Because the diagonal entries in A must be positive, so they are assigned log-normal

distributions, while the off-diagonal entry is modeled with a normal distribution. Fairly

vague, but proper, priors on A seem to render robust inference.

Table 2: Prior distributions for the unknown entries in A

Structure a1 a2 a3

V, D LN(−5.7, 2.1) LN(−4.3, 2.1) –

LT LN(−5.7, 2.1) LN(−4.7, 2.1) N(0.1, 1)

For the simulation studies, we have 100 simulated datasets. Assigning a different set of

priors for each study is infeasible. To maintain consistency across the different generated

datasets we choose hyperparameters such that the prior mean for AAT is roughly the esti-

mated variance of y(t) (averaged over the 100 simulated datasets) and the prior coefficient

of variation for each parameter in A is roughly 10.

Lastly, we adopt an inverse-Wishart (IW) distribution for Σε(θ3). Subsequent inference

is robust with respect to these parameters. We assume Σε(θ3) ∼ IW (S, r), where r = 5

is the degrees of freedom and the inverse scale matrix is S =

 0.002 0.007

0.007 0.038

. Since the

expectation of Σε(θ3) equals
S

r − 2 − 1
, S was chosen from rough preliminary estimates of

the residual variance and covariance.
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2 Prior settings for analysis of misaligned experimen-

tal data in Section 5.2

Table 3 presents the prior distribution adopted in each model. The • indicates the set

of parameters in each model. Recall from Section 3 that Q and G are known for this

experiment. Inferential interest focuses upon estimation of β and the subsequent estimation

of the bivariate distribution for the concentrations in the two fields.

Table 3: Prior Distributions for model parameters for the analysis of the workplace data.

Parameter Prior Distribution
Model

BNLR D LT

β U(0, 13) • • •
a1 LN(−4.5, 2.1) – • •

a2
LN(−3.4, 2.1) – • –

LN(−5.0, 2.1) – – •
a3 N(0.3, 3) – – •

φ1, φ2 DU(19, 1, 5.5) – • •
ν1, ν2 DU(33, 0.5, 2.5) – • •

Σε(θ3) IW

(
5,

[
0.0226 0.0715

0.0715 0.2359

])
• • •
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